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Abstract. We report on a delayed-choice quantum eraser experiment based on a two-photon imaging
scheme using entangled photon pairs. After the detection of a photon which passed through a double-slit,
a random delayed choice is made to erase or not erase the which-path information by the measurement of
its distant entangled twin; the particle-like and wave-like behavior of the photon are then recorded simul-
taneously and respectively by only one set of joint detection devices. The present eraser takes advantage
of two-photon imaging. The complete which-path information of a photon is transferred to its distant
entangled twin through a “ghost” image. The choice is made on the Fourier transform plane of the ghost
image between reading “complete information” or “partial information” of the double-path.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 42.50.Xa Optical tests of quantum theory – 42.50.Dv Nonclassical states of the electromag-
netic field, including entangled photon states; quantum state engineering and measurements

QICS. 02.80.+i Fundamentals of quantum interference (quantum eraser, which-way information, etc.)

1 Introduction

Quantum erasure was proposed in 1982 by Scully and
Druhl [1]. After two decades the subject has become one
of the most intriguing topics in probing the foundations
of quantum mechanics [2,3]. The idea of quantum erasure
lies in its connection to Bohr’s principle of complemen-
tarity [4]: although a quantum mechanical object is du-
ally particle and wave; its particle-like and wave-like be-
haviors cannot be observed simultaneously. For example,
if one observes an interference pattern from a standard
Young’s double-slit interferometer by means of single-
photon counting measurement, a photon must have been
passing both slits like a wave and consequently the which-
slit information can never be learned. On the other hand,
any information about through which slit the photon has
passed destroys the interference. In this context Scully
and Druhl showed that if the which-slit (which-path) in-
formation is erased, the interference pattern can be recov-
ered; the situation becomes extremely fascinating when
the erasing idea is combined with the delayed choice pro-
posal by Wheeler and Alley [5,6]: i.e. even after the de-
tection of the quantum itself, it is still possible to decide
whether to erase or not to erase the which-path informa-
tion, hence to observe the wave behavior or the particle
behavior of the quantum mechanical object.

a Present address: Harvard Medical School and Wellman
Center for Photomedicine, Massachusetts General Hospital,
Boston, MA 02114, USA; e-mail: gscarcelli@partners.org

In the past two decades, a number of experiments
demonstrated the quantum eraser idea by means of dif-
ferent experimental approaches and/or different point of
theoretical concerns [7–17]; in particular Kim et al. [12]
have realized an experiment very close to the original pro-
posal by using entangled photon pair of spontaneous para-
metric down-conversion (SPDC). The experiment demon-
strated that the which-path information of a photon
passing through a double-slit can be erased at-a-distance
by its entangled twin even after the annihilation of the
photon itself. The choice was made between the joint de-
tection of a single two-photon amplitude that involved ei-
ther the upper slit or the lower slit (read which-path infor-
mation) or the joint detection of a pair of indistinguishable
two-photon amplitudes involving both slits (erase which-
path information).

Unlike all previous experiments the present work
takes advantage of two-photon imaging. A photon passes
through a standard Young’s double-slit for its complemen-
tarity examination. The quantum correlation between this
photon and its entangled twin allows the formation of a
“ghost” image of the double-slit on the side of the entan-
gled twin. Thus, the which path information is completely
passed to the entangled twin photon and can be erased by
the detection of the twin. After the detection of the pho-
ton which passed through the double-slit, a random choice
is made on the Fourier transform plane of the “ghost” im-
age between “reading complete information” or “reading
partial information” of the double path. Inherently, this
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new approach can be easily extended to multiple paths or
arbitrary continuous spatial modulations.

Any attempt to interpret the physics of the quantum
eraser in terms of complementarity examination on a sin-
gle photon leads to counterintuitive results and paradoxi-
cal conclusions; on the other hand, if the two-photon na-
ture of the phenomenon is accepted, a straightforward
explanation of the observed effect can be given through
Klyshko’s interpretation of two-photon geometric optics.
From a new angle it is emphasized that the physics behind
two-photon phenomena is significantly different from that
of two independent photons [18].

In this context another novelty of our experiment is
particularly important: a new type of detection scheme.
In all previous quantum erasers, the observation or not
observation of the interference pattern were associated to
different experiments, or at least to different photoelec-
tric detectors. Therefore even though the physics behind
the erasure has been exploited, the implementation of the
random delayed choice can still be improved. In our real-
ization both the erasing choice and the reading choice are
analyzed by a single detector. This characteristic stresses
the interpretative difficulties of the quantum eraser. In fact
in our experiment the particle-like and wave-like behavior
of the photon are recorded randomly and simultaneously
by the same pair of joint measurement devices in only one
measurement process.

The nearly equivalent experimental conditions in
which the realization of the different choices occurs fully
implement Wheeler and Alley delayed-choice proposal and
therefore raise troubling questions on where the measure-
ment, hence the collapse of the wave function, occurs. The
validity of Bohr’s principle of complementarity is probed
in a deeper way than in previous experiments.

The paper is organized as follows: in Section 2, the
principle behind our quantum eraser is explained and its
connection to the intriguing physics of quantum imaging;
in Section 3, a mathematical derivation resulting in the
experimental observation is provided with a brief discus-
sion of attempted interpretations with their difficulties;
in Section 4, the experimental set-up and results are de-
scribed in detail; and finally in Section 5, some conclusive
remarks are presented.

2 Quantum imaging

The quantum eraser here reported uses the fascinating
physics of quantum imaging. The study of quantum imag-
ing started ten years ago after the first demonstration of
an imaging experiment that used entangled two-photon
state of spontaneous parametric down-conversion [19,20].
In that experiment, the signal photon of SPDC passed
through an imaging lens and a complicated aperture, while
the idler photon propagated freely; nevertheless the com-
plete spatial distribution information was present in the
idler photon side of the set-up and an image (named
“ghost” because even though it was formed by the idler
radiation, it reconstructed the spatial modulation experi-
enced only by the signal radiation) was formed in a plane

Fig. 1. Schematic of the quantum erasure: the double-slit in
the plane xo is imaged in the plane xI because of the quantum
correlations of entangled photon pairs. Hence the which-path
information is mapped onto the two-photon imaging plane.

satisfying a Gaussian thin lens equation involving both
arms of the set-up. Over the past ten years, quantum
imaging has attracted a great deal of attention. The equiv-
alence between two-photon Fourier optics and classical
Fourier optics, (with the replacement of the two-photon
amplitudes leading to a joint detection by the spatial
modes of the classical electric field) has been shown [21].
The two-photon amplitudes and their coherent superpo-
sition are troubling concepts in a classical sense because
they imply a non-local behavior of the radiation; however,
they explain in an elegant, consistent and intuitive way all
the features of entangled two-photon optics.

The principle behind our realization of quantum era-
sure is illustrated in Figure 1. The entangled signal and
idler photons generated from SPDC are separated and di-
rected to two photon counting detectors through two in-
dividual arms of an optical set-up. In one arm the signal
photon passes through a standard Young’s double-slit in-
terferometer; in the other arm, an imaging lens is used
for the production of the equal size two-photon “ghost”
image of the double-slit. There is an exact point-to-point
correspondence between the plane of the slits xo and the
image plane xI hence the information about the path of
the signal photon in the double-slit plane is mapped onto
the idler beam in the two-photon imaging plane. At this
point we can choose to erase or to read such information
to decide if the wave-like behavior, i.e., the interference
pattern, of the photon is observable. To achieve this, a
Fourier transform approach is employed as shown in Fig-
ure 2. The two-photon image function f(xI), that contains
the which-path information, is Fourier transformed by the
lens L′ onto its Fourier transform plane. On the Fourier
transform plane, the photon counting detector D2 either
reads the full transformed function or erases most of it.
Knowledge of all the coefficients of the Fourier expansion
is sufficient to reconstruct the two-photon image function
of the double-slit that means knowing the which-path in-
formation. On the other hand, if only the DC term of the



G. Scarcelli et al.: Random delayed-choice quantum eraser via two-photon imaging 169

Fig. 2. Klyshko’s picture of the two-photon imaging set-up
showing the two choices that we named erasing and reading. In
both cases a lens L is placed in the plane of the two-photon im-
age and the detector is placed in the plane of the Fourier trans-
form of the two-photon image. In part (a) the entire Fourier
transform is collected by D2. In part (b) only the central part
of the Fourier transform is detected by D2.

Fourier expansion is read, it will never be possible to re-
construct the structure of the image function f(xI). Con-
sequently, the which-path information of the signal photon
is erased. Thus, the wave behavior will be learned by the
observation of the interference.

The Fourier Transform approach to the quantum
eraser is very interesting, it provides more flexibility in the
scheme. Since we are transferring the which-path informa-
tion through an image, one could avoid using a double-slit
that only provides two possible paths. In principle an in-
finite number of paths or any spatial information can be
transferred and subsequently read or erased.

3 Theory

In this section we will first show that the which-path infor-
mation is indeed present in the two-photon imaging plane
following the exemplar set-up in Figure 1 and then we will
explain in detail the two ways of collecting the idler pho-
tons that, for the sake of clarity, we named erasing and
reading conditions (see Fig. 2).

3.1 Mapping the which-path information
in the “ghost” imaging plane

In quantum theory of photodetection, the probability of
having a joint photodetection at two space-time points,
(r1, t1) and (r2, t2), is governed by the second order
Glauber correlation function [22]:

G(2)(t1, r1; t2, r2) ≡
〈E(−)

1 (t1, r1)E
(−)
2 (t2, r2)E

(+)
2 (t2, r2)E

(+)
1 (t1, r1)〉, (1)

where E(−) and E(+) are the negative-frequency and
the positive-frequency field operators at space-time points

(r1, t1) and (r2, t2) and the average is done over the state
of the radiation. Ignoring the temporal part, the trans-
verse electric field can be written as:

E
(+)
1 (x1) ∝

∑

q

g1(x1; q)â(q)

E
(+)
2 (x2) ∝

∑

q

g2(x2; q)â(q) (2)

where xi is the transverse position of the ith detector,
q is the transverse component of the momentum, â(q) is
the annihilation operator for the mode corresponding to
q and gi(xi; q) is the Green’s function associated to the
propagation of the field from the source to the ith detector.

As far as the radiation is concerned, the process of
SPDC involves sending a pump laser beam into a nonlin-
ear material. Occasionally, the nonlinear interaction leads
to the annihilation of a high frequency pump photon and
the creation of two lower frequency photons known as
signal and idler that satisfy the phase-matching condi-
tions [23,24]. The transverse part of the state of the signal-
idler radiation produced by a CW laser can be simplified
as follows:

|ψ〉 ∝
∑

q,q′
δ(q + q′)â†(q)â†(q′)|0〉. (3)

In this case the second order correlation function can be
written as

G(2)(r1, t1; r2, t2) = |〈0|E(+)(r2, t2)E(+)(r1, t1)|ψ〉|2 (4)

where 〈0| denotes the vacuum state and |ψ〉 the two pho-
ton state of SPDC. 〈0|E(+)(r2, t2)E(+)(r1, t1)|ψ〉 is an
effective two-photon wavefunction, often referred to as
biphoton.

While in classical optics intensities are measured, in
two-photon optics rate of joint detection counts, hence
second order correlation functions, are measured. And
while in classical optics intensities are the modulo-squared
of electric fields, in two-photon optics second order cor-
relation functions are the modulo-squared of the two-
photon effective wavefunction. The two-photon effective
wavefunction contains the coherent superposition of all
the two-photon probability amplitudes that can lead to
a joint photodetection. This is the link between classical
Fourier optics and two-photon Fourier optics: the results
are equivalent if the classical electric field are replaced by
the two-photon probability amplitudes.

By using equations (2) and (3), the spatial part of the
second order correlation function reduces to:

G(2)(x1,x2) ∝
∣∣∣∣∣
∑

q

g1(x1, q)g2(x2,−q)

∣∣∣∣∣

2

(5)

where x1 and x2 are two-dimensional vectors in the trans-
verse planes of detectors D1 and D2 respectively.

Let’s consider, first, the set-up in Figure 1 in order
to show how the which-slit information is mapped into
the “ghost” imaging plane. For the sake of simplicity, let’s
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work in one dimension just analyzing the horizontal trans-
verse direction. For this set-up, the Green’s functions are:

g1(x1; q) ∝ Ψ
[
q,− c

ω
dA

] ∫
dxoT (xo)eiqxo

×Ψ
[
x1,

ω

c
d′A

]
e

i
ωx1xo

cd′
A

g2(x2; q) ∝ Ψ

[
q,− c

ω

(
dB − 1

1
d′

B
− 1

f

)]
e

iqx2
1−d′

B
/f

×Ψ
[
x2,

c

ω

1
d′B − f

]
(6)

where the paraxial approximation and a source of in-
finite transverse size have been assumed. Ψ(|q|, ω

c p) =
e

i
2

ω
c p|q|2 [24].
If the two-photon Gaussian thin lens equation is satis-

fied:
1

dA + dB
+

1
d′B

=
1
f

(7)

and in particular the unitary magnification condition:

dA + dB = 2f
d′B = 2f (8)

the second order correlation function can be rewritten as

G(2)(x1, x2) ∝
∣∣∣∣
∫
dxoT (xo)e

i ω
cd′

A
x1xo

δ(xo − x2)
∣∣∣∣
2

∝ |T (x2)|2 . (9)

It is evident from the δ-function in equation (9) that every
point of the plane of the double-slit is linked to a point in
the “ghost” imaging plane that we labelled xI : hence in
the plane xI of the two-photon image there is the infor-
mation about the path followed by the signal photon in
the plane xo of the slit.

3.2 Reading or erasing the which-path information
of the ghost imaging plane

In order to have the ability of reading or erasing the which-
path information present at xI it is possible to place a
second lens L′ in the plane xI of the two-photon image
and to detect the idler photon in the plane where the
Fourier transform of the two-photon image is formed. It
is known from Fourier analysis applied to optical signals
that if we measure all the Fourier transform of the image
we will still have all the information we had in the im-
age plane, but if we detect only one point of such Fourier
transform plane, the information of the image plane will
be inevitably erased.

The optical set-up that implements such situation is
depicted in Figure 2: a lens L′ of focal length f ′ is in
the imaging plane and a pinhole P is located before de-
tector D2 in the Fourier transform plane of the image
field distribution. In this case, the Green’s function of one

arm g1(x1; q) is unchanged, while g2(x2; q) becomes (no-
tice that x2 is in the plane of the detector D2, and we will
use xI to indicate the transverse coordinate in the plane
of the image):

g2(x2; q) ∝ Ψ

[
q,− c

ω

(
dB +

d′Bf
f − d′B

)]

×
∫
dxIe

iqxI
1−d′

B
/f Ψ

[
x2,

ω

cz

]
e

iωxI
cz . (10)

The second order correlation function is then:

G(2)(x1, x2) ∝
∣∣∣∣
∫
dxIT (xI)e

i
ωxI

c [
x2
z +

x1
d′

A
]
∣∣∣∣
2

. (11)

In the case in which only one point (e.g. x2 = 0) in the
Fourier plane is considered (what we named erasing con-
dition), the second order correlation function reads:

G(2)
erase(x1) ∝

∣∣∣∣
∫
dxIT (xI)e

i
cx1xI
ωd′

A

∣∣∣∣
2

∝
∣∣∣∣Fωx1

cd′
A

(T (xI))
∣∣∣∣
2

(12)

that in the case of a double-slit of slit width a and slit sep-
aration d becomes the usual interference diffraction pat-
tern:

G(2)
erase(x1) ∝ sinc2

(
πx1a

λd′A

)
cos2

(
πx1d

λd′A

)
. (13)

In the case in which all the photons arriving in the Fourier
plane are detected (reading condition), the second order
correlation function becomes:

G
(2)
read(x1) ∝

∫
dx2|Fω

c [
x1
d′

A
+

x2
z ]{T (xI)}|2 = const. (14)

that shows the absence of any interference pattern.
As we pointed out in the introduction, the interpreta-

tion of the quantum eraser results in terms of complemen-
tarity examination on a single photon is troubling. On the
other hand, the straightforward calculation presented here
can be intuitively captured if it is based on the concept of
nonlocal two-photon amplitudes and their coherent super-
position. In this sense, the physics behind entangled two-
photon phenomena seems having no classical counterpart
in electromagnetic theory. In order to help clarifying this
physics, Klyshko proposed an “advanced-wave model” [20]
that forces a classical counterpart of the concept of two-
photon amplitudes and the associated two-photon optics.
In his model, Klyshko considered the light to start from
one of the detectors, propagate backwards in time until
the two-photon source of SPDC and then forward in time
towards the other detector. The two-photon source is thus
playing the role of a mirror to keep the proper transverse
momentum relation of the entangled photon pair. Figure 2
is particularly suitable for Klyshko’s picture: the which
path information is carried by the advanced waves from
the double-slit to the Fourier Transform plane of the ghost
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Fig. 3. Schematic of the experimental set-up.

image according to the classical rules of Fourier optics. A
straightforward calculation reveals that the Fourier Trans-
form plane, referring to Figure 2, is at a distance z from
lens L′ such that:

1
d′B − f

+
1
z

=
1
f ′ . (15)

This equation has a ready explanation: it is a thin lens
equation involving lens L′ in which the object plane co-
incides with the focal plane of lens L. Therefore, if we
read Figure 2 from right to left, from the idler detector
till the double-slit, we can provide another perspective on
the optical interpretation of the phenomenon. The erasing
condition is equivalent to having a point source and a lens
system at a focal distance from it in such a way that only
one momentum of propagation of the two-photon light
is selected. It is then natural to observe an interference
pattern from the double-slit because collimated radiation,
with only one k, is impinging on it. On the other hand, in
the reading condition the situation is equivalent to having
an extended source; as a result the radiation that impinges
on the double-slit has all possible values of the momentum
and each of the momenta will produce a slightly shifted
interference-diffraction pattern. The total result, due to
the incoherent sum of all such patterns, will be a constant.

The above two-photon picture helps establishing a con-
nection between this eraser and the ghost interference ef-
fect first demonstrated by Strekalov et al. [25] as well as
the erasure’s idea by Dopfer et al. that similarly used
the transverse correlations of SPDC even though it did
not involve the transfer of the which-path information via
imaging [10]. Using Klyshko’s picture, even the puzzling
physics of quantum erasure is trivial, which is the beauty
of Klyshko’s model.

4 Experiment

A sketch of the experimental set-up is presented in Fig-
ure 3. A 5-mm type-II BBO crystal, cut for collinear de-
generate phase matching was pumped by an Ar+ laser at
wavelength 457.9 nm. After passing the nonlinear crystal,
the pump radiation was filtered out by a mirror with high

reflection at the pump wavelength and high transmission
at the wavelength of the signal and idler by an RG715
color glass filter. The signal-idler radiation was then split
by a polarizing beam splitter; in the transmitted arm (A)
a double-slit was placed at distance dA = 115 mm from
the crystal and in the far field zone (d′A = 1250 mm) a nar-
row bandpass filter (10 nm band centered at 916 nm) was
inserted in front of D1, a single photon counting detector
(Perkin Elmer SPCM-AQR-14) that was used to scan the
transverse horizontal direction; in the reflected arm (B) a
lens L of focal length f = 500 mm was placed at a distance
dB = 885 mm from the BBO crystal and a non polarizing
beam splitter (NPBS) was at a distance dNPBS = 985 mm
from the lens L. Notice that the beam splitter NPBS is
the device at which the idler photon makes the random
choice. In the output ports of NPBS we built the two dif-
ferent ways of detecting the idler photons following the
example of Figure 2: in the transmitted arm a lens L′

T of
focal length f ′

T = 250 mm was at a distance dL′ = 15 mm
from NPBS and a very small pinhole PT was placed at
zT = 500 mm from the lens just before coupling the ra-
diation in a 4.5 m long multimode optical fiber (FT ); in
the reflected arm a lens L′

R of focal length f ′
T = 50 mm

was at a distance dL′ = 15 mm from NPBS and a com-
pletely open pinhole PR was placed at zR = 55 mm from
the lens just before coupling the radiation in a 2 m long
multimode optical fiber (FR). The two optical fibers were
then joined at a 2 to 1 fiber combiner and their output
was filtered by a narrow bandpass filter (10 nm band cen-
tered at 916 nm) and measured by a single photon count-
ing detector (Perkin Elmer SPCM-AQR-14). The output
photocurrent pulses from the two photodetectors were fi-
nally sent to the “start” and “stop” inputs of a Time to
Amplitude Converter (TAC) then connected to a Multi-
Channel Analyzer (MCA) and with a PC the coincidence
counting rate in a desired window was measured.

Usually in delayed-choice quantum eraser experiments,
each choice is associated with a different detector and
therefore the two situations of no interference or recovered
interference are obtained by counting coincidences with a
separate measurement device. In our experiment we de-
cided to use only one photo-detector D2. Both transmit-
ted and reflected photons at NPBS were sent to D2 with
different optical delays (given by the different length of
the fibers FT and FR). In this way we created histograms
as in Figure 4 that measure the second-order correlation
function as a function of t2 − t1 and that calibrate the
coincidence time window for the actual coincidence count-
ing measurement: the first peak corresponds to the coinci-
dence counts of D2 with the reflected side of NPBS (read-
ing situation) while the second peak corresponds to the
coincidence detections of D2 with the transmitted side of
NPBS (erasing condition). The coincidence counting rate
associated to each choice is then measured within the ap-
propriate coincidence time window.

The curves in Figure 4 carry another significant in-
formation. The FWHM of the curves is mainly deter-
mined by the response times of the detectors and measures
the uncertainty with which we are able to determine the
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Fig. 4. Typical MCA distribution. The two different way of
detecting idler photon are time “encoded” by using two mul-
timode optical fibers of different length; hence in the MCA
pattern the two peaks correspond to the two different situa-
tions.
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Fig. 5. Experimental results for a double-slit of slit width
a = 150 µm and slit separation d = 470 µm. The filled squares
show the coincidence count pattern obtained in the reading sit-
uation, while the empty circles indicates the pattern obtained
in the erasing situation. The solid line is the theoretical expec-
tation of a 85% visibility interference-diffraction pattern.

difference in time arrival between signal and idler photons
∆(t2 − t1). In order to achieve the delayed erasure condi-
tion, i.e. the choice of the idler photon and the detection
of the signal photon at D1 have to be space-like sepa-
rated events; the optical path difference between the crys-
tal and the NPBS (where the choice is randomly made)
has to be bigger that the distance from the crystal to de-
tector D1 of a quantity larger than ∆(t2− t1). In this case
∆(t2 − t1) ∼ 1 ns, while the difference in path lengths
[(dB + dNPBS) − (d′A + dA)]/c ∼ 1.7 ns, therefore we can
be sure that the choice is made after the detection of the
signal photon at detector D1.

The experimental results are shown in Figures 5 and 6.
They refer to two different double-slits: one with slit width
of a = 150 µm and slit separation d = 470 µm and the
other with slit width of a = 100 µm and slit separation
d = 250 µm. In the graphs both the erasing condition
measurement (empty circles) and the reading condition
measurements (filled squared) are shown. As expected,
when we read the which-path information, we do not see

Fig. 6. Experimental results for a double-slit of slit width
a = 100 µm and slit separation d = 25 µm. The filled squares
show the coincidence count pattern obtained in the reading sit-
uation, while the empty circles indicates tha pattern obtained
in the erasing situation. The solid line is the theoretical expec-
tation of a 95% visibility interference-diffraction pattern.

any interference pattern while when we erase such infor-
mation the experimental data agree with the expected
interference-diffraction of the double-slits. The visibilities
of both interference patterns are very high (85% and 95%
respectively) and only limited by the finite size (∼200 µm)
of detector D1.

Let us now point out some additional characteristics of
the experimental set-up. (1) The double-slit has to satisfy
the condition ∆θ � λ/d in order to avoid the existence of
any first order interference-diffraction pattern. From the
tuning curves of the BBO crystal we computed the diver-
gence of the SPDC radiation to be around ∆θ ∼ 27 mrad.
For this reason we chose two different double-slits, one
with λ/d ∼ 3 mrad and the other with λ/d ∼ 1.5 mrad.
(2) The two lenses L′

T and L′
R are placed in the plane

where the two-photon image of the double-slit is formed
as described in the theory section. Notice, in fact, that the
distance from the slit, back to the crystal and forward to
the lens L, i.e. dA + dB is exactly equal to 2f ; also, the
distances from the lens L to the two lenses L′

T and L′
R,

i.e. d′B = dNPBS +dL′ is again equal to 2f . Therefore such
distances satisfy the two-photon Gaussian thin lens equa-
tion with unitary magnification of equations (7) and (8).
(3) We used two different lenses L′ in order to better
achieve the reading and erasing condition mentioned in
the theory section. In the transmitted arm of NPBS, the
focal length of L′

T is large, therefore a small pinhole is a
good approximation of taking only the central point of the
Fourier plane; on the other hand, in the reflected arm the
focal length of L′

R is short, therefore a completely open
pinhole PR of diameter ∼1 cm, is a very good approxima-
tion of detection of all the Fourier plane.

5 Conclusion

The key idea of the eraser is to transfer the which-path in-
formation to a distant location via a two-photon “ghost”
image and then read or erase the path information in its
Fourier transform. Therefore, the result of this quantum
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eraser can be viewed in terms of continuous variables of
position and momentum. This aspect is interesting given
the recent interest in continuous variable entanglement
for quantum information processing [17,26,27]. Using a
double slit in the actual experiment and therefore prov-
ing equation (13) was a matter of convenience and clar-
ity. However, the observed interference-diffraction pattern
is experimental evidence of the general result in equa-
tion (12). Therefore, there is no restriction, in principle,
to extend the present idea to multi-slits (paths) or even
continuous spatial modulation.

Having demonstrated a quantum eraser via two-
photon ghost imaging with a Fourier transform approach
shows that ghost imaging schemes coherently transfer the
optical information between two distinct arms of a set-
up. This property might be useful because it shows the
possibility to implement phase operations, or Fourier ma-
nipulations in a nonlocal fashion to improve the optical
performances of imaging schemes.

From a fundamental point of view, we have demon-
strated a new scheme for delayed choice quantum eraser.
This new eraser has probed all the interesting physics pro-
posed by Scully and Druhl. The experiment, from a dif-
ferent perspective, demonstrates and questions two of the
most intriguing fundamental concepts of quantum theory:
complementarity and entanglement.

As for the complementarity, for the first time, a delayed
choice quantum eraser is demonstrated in which the choice
to erase or not erase is realized truly at random in only
one photo-detector. In many previous experiments the in-
terference or no interference situations involved basically
different experiments and/or different experimental runs.
Some of the other previous quantum erasers did not in-
volve different experimental realizations, but anyway two
different measurement devices were associated to the eras-
ing and not erasing conditions. In our experiment all the
photons, belonging to either choice, arrive to the same
photo-electric device truly at random. This aspect is very
interesting because the experimental conditions associated
with the different choices are very similar and therefore it
is not trivial to establish where the measurement, hence
the collapse of the wave function, occurs.

As for the entanglement, this experiment has strik-
ingly shown a fundamental point that is often forgotten:
for entangled photons it is misleading and incorrect to
interpret the physical phenomena in terms of indepen-
dent photons. On the contrary the concept of “biphoton”
wavepacket has to be introduced to understand the non-
local spatio-temporal correlations of such kind of states.
Based on such a concept, a complete equivalence between
two-photon Fourier optics and classical Fourier optics can
be established if the classical electric field is replaced with
the two-photon probability amplitude. The physical in-
terpretation of the eraser that is so puzzling in terms of
individual photons’ behavior is seen as a straightforward
application of two-photon imaging systems if the nonlocal
character of the biphoton is taken into account by using
Klyshko’s picture.
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